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ABSTRACT

An experiment to cause artificial changes in the electron-density

profile of the F region of the ionosphere was conducted in order to ex-

perimentally verify the theoretical conclusion dczoribo T -b

PE ~re�_ j.lJ, that the electrons in the F region could be arti-

ficially heated by a radio wave. \ An antenna array, fed by a 40 kw

transmitter, was used to illuminate a portion of the ionosphere at a

frequency slightly below the critical frequency. An absorption of energy

from-this beam by the electrons in this layer was expected, thereby in-

creasing the average electron temperature and modifying the density

profile. With the equipment used for this experiment, a 3½-percent de-

crease in the maximum of the electron-.density profile, corresponding to

a reduction of 135 kc in the observed critical frequency 7700 kc, wa&

expected. A phase-path sounder used to measure changes in the phase-

path height, and vertical-incidence sounder used to measure the virtual

height, (both estimated to be sensitive to a 50-kc change in the critical

frequency) were unable to detect any changes in several trials of the

experiment.
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I. INTRODUCTION

Heating the ionosphere with radio waves, especially at frequencies

near the gyro-frequency, is not a new concept and much has been written

on the subject. But heating the ionosphere at frequencies near the

critical frequency has as yet been untried. Theoretical work has been

done however, and Farley [Ref. 1], who has presented a detailed dis-

cussion of the subject, derived steady-state expressions for the electron-

density and temperature profiles as a function of the transmitter pa-

rameters. In an attempt to verify these expressions, a radio beam was

directed toward the ionosphere from a large antenna array located on the

Stanford campus. By inserting the values of the parameters involved in

this experiment into the expressions derived by Farley, expected magni-

tudes of changes were calculated. A sounder, sensitive to changes in

the vertical-phase path height, and a vertical-incidence sounder were

used to record any artificial changes resulting from changes in the

electron-density profile.
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II. ANTENNA ARRAY AND TRANSMITTER

The antenna array consisted of 21 center-fed dipoles. Each dipole

was cut to a length equal to 0.64 wavelength or 25 meters. The array

was formed by three columns of seven parallel dipoles in each column.

In constructing the array, compensation was made for variations in the

existing terrain level so that the plane of the antenna was as close to

O-deg elevation as possible (i.e., the beam of the array pointed to the

zenith). The physical layout of the heating antenna and the associated

measuring equiipment is shown in Fig. 1. In an attempt to increase the

efficiency of the antenna, a single, copper, ground wire was fixed 18 ft

below each dipole, parallel to it, to act as a reflector.

The seven dipoles in each column were fed in parallel, each con-

nected by a full-wavelength transmission line. Each of the three columns

was then connected to a quarter-wave matching section and these were then

all connected in parallel to a 600-ohm, open-wire transmission line. The

array was matched to the transmitter by adjusting the impedance of the

three quarter-wave matching sections in each column. Figure 2 is a

diagram of the array.

The input impedance of the array measured at the transmitter was

200 ohms, making the standing-wave ratio on the main transmission line

3:1. The total loss in the 600-ohm, open-wire transmission line between

the transmitter and antenna (approximately 530 meters) at 7700 kc, in-

cluding the effects of this standing-wave ratio, was calculated to be of

the order of 0.1 db. The measured beamwidth was found to be 12 deg and

nearly symmetrical about an axis perpendicular through the center of the

array.

The transmitter used to excite the array was a military type FRT 22.

The dc input to the final stage was 10 amp at 6 kv, giving approximately

40 kw at a 70-percent efficiency. The frequency was constant at 7700 kc.
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FIG. 2. ANTENNA ARRAY USED TO ARTIFICIALLY HEAT THE ELECTRONS IN

THE F REGION OF THE IONOSPHERE.
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III. EXPERIMENTAL PROCEDURE

Extraction of energy from the "heating" radio wave by the electrons

in the F region of the ionosphere was expected, thereby increasing the

average electron temperature with respect to the heavier particles.

This temperature increase would result in a decrease in electron density

and a decrease in the critical frequency of the F region. Since the

frequency of the transmitter could not be changed easily, the experiment

was performed during the time of day when the critical frequencies were

near the transmitter frequency, 7700 kc. The time for the electron

temperature to make a change from equilibrium was expected to be of the

order of 10 sec; therefore, the transmitter was pulsed on and off in

30.-sec intervals to allow sufficient time to observe any changes.

A vertical-incidence sounder was operated every 15 min to record

the critical frequencies of the F region as a function of time. In all

but one trial of the experiment, information supplied by the vertical-

incidence sounder was used only to determine when the heating equipment

should be turned on, so that the experiment could be performed when the

critical frequencies were near 7700 kc.. Any artificial changes in the

ionosphere were, expected to appear on the film record made by the phase-

path sounder. The experiment was performed on 11, 12, 16, 17, and 23

October and 6 November 1962.

During the 23 October 1962 experiment, the vertical-incidence

sounder was operated "manually" by holding constant its frequency at

7600 kc (100 kc below the heating frequency) instead of allowing it to

sweep and make a continuous record. When the equipment was operated

this way, echoes from both the X and 0 rays were observed and a change

in virtual height corresponding to a change of 50 kc in the critical

frequency could have been detected. In this one trial no changes could

be observed.
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IV. PHASE-PATH SOUNDER

Equipment similar to the type described by J. W. Findlay [Ref. 2]

was used to detect changes in the round-trip phase path to the iono-

sphere. Figure 3 is a block diagram of this phase-path sounder. A

transmitter, tuned to a frequency 50 kc lower than the heating frequency

(7700 kc), was gated by 200-pLsec-wide pulses at a 50-pps rate. The out-

put of the receiver, which receives both the transmitted and the re-

flected pulses, is displayed on an oscilloscope. These received signals

are beat with a signal from a local oscillator in the detector stage of

the receiver to provide an output of a short sinusoidal trace on the

oscilloscope. This local oscillator is adjusted to provide two complete

sinusoidal cycles within the 200-ýisec keying interval. The first peak

of the transmitted pulse is used to trigger the oscilloscope sweep,

thereby locking the displayed phase position of the transmitted pulse.

The reflected signal from the ionosphere will be of the form

e = E sin w (t - P/c), where w is the angular frequency of ther r 0 0

transmitted signal and P is the round-trip phase' path given by

P = c as

path p

where v is the phase velocity over the interval (ds) of path
p

length, and c = velocity of light. The receiver output will be of the

form (within the 200-ýLsec keying interval):

e = E sin 2nf t - ,
0 0 2 c

where f 2  is 10 kc. For the displayed signal to shift an amount equal

to the distance between successive peaks, woP/c must change by 2g.

Therefore (wo/c) ,P = 21c and P = 2cc =/c 0 . A change of one

free-space wavelength (of the transmitted signal) in the phase path

will cause the displayed signal to shift an amount equal to the distance

between successive peaks.
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The output of the receiver was used to intensity modulate the beam

of an oscilloscope, while a fý.lm was slowly passed over the display. A

portion of the film record. ta&.en on 16 November 1962 is shown in Fig. 4.

The lower traces in these records are the peaks of the transmitted

signal, locked in phase by triggering the oscilloscope sweep with the

first peak. The upper traces are the peaks of the reflected signal.

The uniform shift in phase of these traces is due to the natural changes

in the phase path. Figure 5 is the phase-path record for the same day,

with the horizontal gain of the oscilloscope increased and the trace

repositioned to eliminate the traces of the transmitted pulses.

The sensitivity, limited by the physical parameters of the equip-

ment, was estimated to be +50 kc in terms of changes in the critical

frequency.
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FIG. 3. BLOCK DIAGRAM OF THE PHASE-PATH SOUNDER
AND TYPICAL RESULTING TRACE.

8- SEL-63-036



a' £

I-•

U C0

- a,/ - _a .

II 0

a-a

a- 0

a- -

- 9 - s56-0 6

-'r



Zz w

F- Cl)

0- U

Z Co

<00Cl

00 SE-303



V. COMPARISON WITHTTHEORY

To calculate steady-state conditions, Farley evaluated the follow-

ing equations:

1. Within the area of the ionosphere illuminated by the applied field:

rate at which rate at which
electrons lose electrons lose rate at which
energy to the + = electrons absorb (1)
heavier energy byconduction eeg
particles

2. outside the illuminated area:

rate at which rate at which
electrons lose electrons lose
energy to the + energy by 0' (2)heavier energy by

heavierconduction

particles

The rate at which electrons absorb energy in the ionosphere is.

given by

Ne 2 v E 2i 22
1 o2 1 (3)
2 o m me( 2 + v2 )

where the applied field is E = Eo e t; N, e, m are the density,

charge, and mass, respectively, of the electron; v is the collision

frequency, and c is the electrical conductivity of the plasma. For

2 2

m 0le

Ginzburg and Gurevich [Ref. 3], give the following expression for the

rate at which electrons lose energy to the heavier particles by

collisions:

L (T - T) - _ N 5 v K(Te - T), (5)
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where T and T are the temperatures of the electrons and thee a

heavier particles respectively, K is Boltzmann's constant, and 5 is

the mean fractional loss of excess energy per collision. The relaxation

time for this volumetric loss process is i/Sv. If the collision fre-
3quency is taken to be of the order of 10 , and the ions are assumed to

be 0+ , this time is of the order of 10 sec.

To simplify the conduction problem, the geometry was reduced to

one dimension, since in the F region the gyro frequency is much greater

than the collision frequency, so that conduction would be along the lines

of magnetic field.

Including conduction effects, Eq. (1) and (2) become

2L v(T e -T) 0 K,,XX (T e T 0O) 1 QIx < x0 (6)

T 2L v(T e-0T)-1,,77 (T e-T0) 0 1Ix > X0 (7)

where ' KI is the coefficient of thermal conductivity in the direction

of the magnetic field. Note that all of the "constants" in the dif-

ferential equation above are temperature dependent. Farley divides the

equations above by K,, and assumes that Lv/KiI is a constant, inde-

pendent of X, with a value to correspond to the average electron

temperature within the beam at a particular height. This assumption

insures that Q/K, will be a constant inside the beam. These as-

sumptions are justified by the fact that very small temperature changes

are expected. By applying appropriate boundary conditions, the dif-
C

ferential equation can be solved. The solution of Eq. (6) is
-(ax

T - T (1 - e _0 cosh ax) lxi < X_, (8)e L 0
v

C

where

a6 -L3/K1
0
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From Eqs. (4) and (5):
2E2
e E

0
Lv 3wm eKe

so

T e2 -ax

2 e

ie 1+E2•( 0 2e cosh ax)

where 0 3TU0Wm5K

1 (3To0 2me5K),"= E 2
12 p

e

is the characteristic plasma field introduced by Ginzburg and Gurevich.

Therefore:

T E2  -x
e= + 0 (1 -e 0.cosh ax).aO E2

p

The average electron temperature T inside the beam can be found bye
integrating over x from -x0  to +x 0

E2
T 1 +- e

Tc 2x 2a 0

E in terms of the transmitter parameters, is

E2 (h) = 2rjPAp 2 (h) (9)
0 0 O~h 2n()

where .j is the antenna efficiency, P is the transmitter power,. A is

the antenna aperature, p 2(h) is the attenuation factor due to the losses

in the medium, ?\ is the wavelength of the applied field, h is the
height above the antenna, and n is the refractive index. Thus
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E 2 2 /2 \
0 0 e ( ~(h) '

o- = o 6T 2c-m 6e KT° h2 nP

where

( 22= 1.77o6•2c cm 5KT

for To =1200 K and b = 2 me/mi.

If the refractive index is written as
1

where N is the critical density and

c Ct = 1.77 IAP, (ii)

we have the equation derived by Farley,

S+ 1h 1 - 1-(X 1 e ) (12)

Farley gives the following for a relation between T and N:e

2 N(h), (13)

where N (h) is the initial electron profile (in this case taken as a

Chapman layer with a scale height or 50 km and a maximum density of

1012 electrons/m3 ). The attenuation factor P2(h) is the ratio, at h,

of the electric field strength to the field strength that would exist
in a lossless medium. This factor is a complicated integral expression

making Eq. (12) quite difficult to solve. This equation was solved,

however, by means of a computer and some results appear in Farley's

paper.
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A comparison of the parameters of this experiment performed at

Stanford with the parameters used by Farley in solving the expression

above will give an idea of what magnitude of results to expect. For a

300-meter-diameter, spherical dish antenna with an efficiency of 55 per-

cent, fed by a 50-kw transmitter, and a 50-deg magnetic-dip angle, Farley

predicts a 300 OK increase in electron temperature and a 10-percent de-

crease in electron density. The initial electron-density profile was

assumed to be a Chapman layer with maximum density at 300 km. Since the

largest changes in the profile will occur at this height, the following

calculations were made for h = 300 km in Eq. (12). When we rewrite

Farley's equation,

ATe Ctp.2(h)

To nh2  f(x) (14)

where

f(X) = 1  e i -2x

o = 2•xo

For Farley's calculations,

Ct = 3.4(i0
9 )m2

f(xo) = 0.6

ATe = 300 OK

In this experiment the power input to the antenna was 40 kw. The

total loss in the 600-ohm, open-wire, transmission line between the

transmitter and antenna (approximately 530 meters), including the effects

of the 3:1 standing-wave ratio, was calculated to be 0.1 db.

Since the beamwidth of th,9 antenna array was actually measured

(with the help of an airplane), a simple calculation can be made to

determine the effective aperhture. For the 12-deg beamwidth at 7700 kc
4 2the aperature is 3.45 (10 )m . It may be observed that the actual

physical area containing the dipoles (see Fig. 2) is 3.10 (10 4)m2

- 15- SEL-63-036
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The efficiency of this antenna array is difficult to calculate

with any degree of accuracy. The effect of the single reflector is

questionable. Thus, for the following calculations, the efficiency will

be assumed to be 50 percent.

Therefore, for this experiment, the factor Ct equals 1.2 (10 9 )m2

in Eq. (14). For a 300-km height, a magnetic-dip angle of 60 deg, and

a 12-deg beamwidth, f(x ) in Eq. (14) is equal to 1.0. At a given
2 02height p (h), n, and h will be constants in Eq. (14), so that the

following ratio may be taken:

(•T)Stanford_ (Ale)s (1.2) f1.0. .

(ATe)Farley 300 37 0 059

therefore,

(ATe)s = 177 K

w(h) = 2 + 177/1200) 0(

N(h) = 0.93 No(h)

Hence, with the equipment used in the Stanford heating experiment,

a 7-percent decrease in electron density or a 3½-percent decrease
(270 kc) in the critical frequency should have been observed.

If a 3-db power loss is assumed (because of round-trip D-region

absorption or inefficient power radiation) the increase in electron

temperature would be only 88 OK and the corresponding decrease in

electron density would be 32L percent (or about a 1.75-percent decrease

in the critical frequency--135 kc).
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VI. SUMMARY

A radio beam with a frequency slightly below the critical frequency

was directed toward the F region of the ionosphere in an effort to cause

a modification of the electron density profile. A comparison with

calculations made by D. T. Farley indicates that, with the equipment

used for this experiment, a 3½-percent decrease in the maximum of the

electron-density profile (assuming the electron-density profile to be

given by a Chapman layer with a scale height of 50 km and a maximum

density of 1012 electrons/M3 at a height of 300 km) should have been

observed. This change corresponds to a reduction of 135 kc in the

critical frequency from 7700 kc.

A phase-path sounder used to measure changes in the phase-path

height, and a vertical-incidence sounder used to measure the virtual

height, (both estimated to be sensitive to a 50-kc change in the critical

frequency) were unable to detect any changes in several trials of the

experiment. Since it was impossible to hold the heating frequency equal

to slightly below the critical frequency, and the expected changes were

marginal, the actual changes may have been too small to have been de-

tected by the measuring equipment. It is also probable that not all

factors contributing to the attenuation of the heating signal were

taken into account.
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